8) Analysis

<u>Pure substances</u>

•In chemistry, a **pure** substance is a single element or compound, **not mixed with any other substance**.

• Pure elements and compounds melt and boil at **specific temperatures**.

•Melting point and boiling point data can be used to distinguish pure substances from mixtures.

Formulations

•A formulation is a **mixture** that has been designed as a useful product.

•Formulations include fuels, cleaning agents, paints, medicines, alloys, fertilisers and foods.

Testing for gases

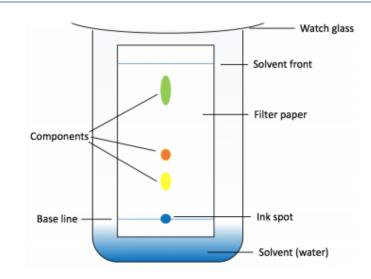
•The test for **hydrogen** uses a burning splint held at the open end of a test tube of the gas. Hydrogen burns rapidly with a **pop** sound.

•The test for oxygen uses a glowing splint inserted into a test tube of the gas. The splint relights in oxygen.

•The test for **carbon dioxide** uses lime water. When carbon dioxide is shaken with or bubbled through limewater the limewater turns **milky (cloudy)**.

•The test for **chlorine** uses **litmus paper**. When damp litmus paper is put into chlorine gas the litmus paper is **bleached** and turns white.

<u>Chromatography – required practical</u>


Chromatography can be used to separate mixtures and can give information to help identify substances.
Chromatography involves a stationary phase and a mobile phase.

•The ratio of the distance moved by a compound (centre of spot from origin) to the distance moved by the solvent can be expressed as its R_f value:

R_f= <u>distance moved by substance</u> <u>distance moved by solvent</u>

•Different compounds have different R_f values in different solvents, which can be used to help identify the compounds.

•The compounds in a mixture may separate into different spots depending on the solvent but a pure compound will produce a single spot in all solvents.

<u>Triple only</u>

Flame tests

Flame tests can be used to identify some metal ions (cations).
Iithium compounds result in a crimson flame
sodium compounds result in a yellow flame
potassium compounds result in a lilac flame
calcium compounds result in an orange-red flame
copper compounds result in a green flame.

•If a sample containing a **mixture** of ions is used, some flame colours can **be masked**.

<u>Testing for cations with sodium hydroxide</u> •Solutions of aluminium, calcium and magnesium ions form white precipitates when sodium hydroxide solution is added but only the <u>aluminium hydroxide precipitate dissolves</u> in excess sodium hydroxide solution.

Copper(II) forms a blue precipitate,
iron(II) a green precipitate
iron(III) a brown precipitate.

Instrumental methods

Instrumental methods are accurate, sensitive and rapid.
Flame emission spectroscopy is an example of an instrumental method used to analyse metal ions in solutions.
The sample is put into a flame and the light given out is passed through a spectroscope. The output is a line spectrum that can be

analysed to identify the metal ions in the solution and measure their concentrations.

<u>Carbonates</u>

Carbonates react with dilute acids to form **carbon dioxide gas**. Carbon dioxide turns <u>limewater</u> <u>cloudy</u>.

<u>Sulfate ions</u>

Sulfate ions in solution produce a white precipitate with barium chloride solution in the presence of dilute hydrochloric acid.

The halides

Add silver nitrate solution and dilute nitric acid. The colour of the precipitate (solid) tells you which halide is present: Silver chloride is white, Silver bromide is cream and Silver iodide is yellow.